Continuous Belief Functions to Qualify Sensors Performances
نویسندگان
چکیده
In this paper, we deal with the problem of sensor performance estimation. As we assume that the sensor is described with only few data, we decide to use the theory of belief functions to represent the inherent uncertainty of our information. Hence, we introduce the belief functions framework, especially in the continuous approach. We describe the model of sensor adopted in our study. Knowing the experimental setting, we suggest an approach to model the sources of information describing our sensor. Finally, we combine these sources in order to estimate sensor performances.
منابع مشابه
Features modeling with an $α$-stable distribution: Application to pattern recognition based on continuous belief functions
The aim of this paper is to show the interest in fitting features with an α-stable distribution to classify imperfect data. The supervised pattern recognition is thus based on the theory of continuous belief functions, which is a way to consider imprecision and uncertainty of data. The distributions of features are supposed to be unimodal and estimated by a single Gaussian and α-stable model. E...
متن کاملA Distance between Continuous Belief Functions
In the theory of belief functions, distances between basic belief assignments are very important in many applications like clustering, conflict measuring, reliability estimation. In the discrete domain, many measures have been proposed, however, distance between continuous belief functions have been marginalized due to the nature of these functions. In this paper, we propose an adaptation inspi...
متن کاملBelief Inference with Timed Evidence - Methodology and Application Using Sensors in a Smart Home
Smart Homes need to sense their environment. Augmented appliances can help doing this but sensors are also required. Then, data fusion is used to combine the gathered information. The belief functions theory is adapted for the computation of small pieces of context such as the presence of people or their posture. In our application, we can assume that a lot of sensors are immobile. Also, physic...
متن کاملA Comparison between a Bayesian Approach and a Method Based on Continuous Belief Functions for Pattern Recognition
The theory of belief functions in discrete domain has been employed with success for pattern recognition. However, the Bayesian approach performs well provided that once the probability density functions are well estimated. Recently, the theory of belief functions has been more and more developed to the continuous case. In this paper, we compare results obtained by a Bayesian approach and a met...
متن کاملDecision fusion for postal address recognition using belief functions
Combining the outputs from several postal address readers (PARs) is a promising approach for improving the performances of mailing address recognition systems. In this paper, this problem is solved using the Transferable Belief Model, an uncertain reasoning framework based on Dempster-Shafer belief functions. Applying this framework to postal address recognition implies defining the frame of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011